Monday, May 12, 2025
  • English
  • Marathi
No Result
View All Result
Daily PRABHAT
  • Home
  • Latest News
  • National
  • International
  • Entertainment
  • Politics
  • Sports
  • Business
  • More
    • Health
    • Lifestyle
    • Technology
    • Science
Daily PRABHAT
No Result
View All Result
  • Home
  • Latest News
  • National
  • International
  • Entertainment
  • Politics
  • Sports
  • Business
  • More
Home Science

Bone fractures in cancer patients can be predicted using AI: Research

by
3 years ago
in Science
A A
Bone fractures in cancer patients can be predicted using AI: Research
Share on FacebookShare on Twitter

Washington [US], May 6 (ANI): A new study suggests how scientists can use artificial intelligence to predict how cancer may affect the probability of fractures along the spinal column.

In the U.S., more than 1.6 million cases of cancer are diagnosed every year, and about 10 per cent of those patients experience spinal metastasis — when the disease spreads from other places in the body to the spine. One of the biggest clinical concerns patients face is the risk of spinal fractures due to these tumours, which can lead to severe pain and spinal instability.

“Spinal fracture increases the risk of patient death by about 15 per cent,” said Soheil Soghrati, co-author of the study and associate professor of mechanical and aerospace engineering at The Ohio State University. “By predicting the outcome of these fractures, our research offers medical experts the opportunity to design better treatment strategies, and help patients make better-informed decisions.”

While many of the changes the body undergoes when exposed to cancerous lesions are still a mystery, with the power of computational modelling, scientists can get a better idea of what’s happening to the spine, said Soghrati.

Their study, published in the International Journal for Numerical Methods in Biomedical Engineering, describes how the researchers trained an AI-assisted framework called ReconGAN to create a digital twin or a virtual reconstruction of a patient’s vertebra.

Unlike 3D printing, where a virtual model is turned into a physical object, the concept of a digital twin involves building a computer simulation of its real-life counterpart without creating it physically. Such a simulation can be used to predict an object or system’s future performance – in this case, how much stress the vertebra can take before cracking under pressure.

By training ReconGAN on MRI and micro-CT images obtained by taking slice-by-slice pictures of vertebrae acquired from a cadaver, researchers were able to generate realistic microstructural models of the spine. Using their simulation, Soghrati’s team was also able to virtually enlarge the model, a capability the study says is imperative to understanding and incorporating changes into the entirety of a vertebra’s geometric shape.

“What really makes the work in a distinct way is how detailed we were able to model the geometry of the vertebra,” said Soghrati. “We can virtually evolve the same bone from one stage to another.”

In this case, the researchers used CT/MRI scans from a 51-year-old female lung cancer patient whose cancer had metastasized to simulate what might happen if cancer weakened some of the vertebrae and how that would affect how much stress the bones could take before fracturing.

The model predicted how much strength parts of the vertebra would lose as a result of the tumours, as well as other changes that could be expected as cancer progressed. Some of their predictions were confirmed by clinical observations in cancer patients.

For a field like orthopaedics, using a non-invasive tool like the digital twin can help surgeons understand new therapies, simulate different surgical scenarios and envision how the bone will change over time, either due to bone weakness or to the effects of radiation. The digital twin can also be modified to patient-specific needs, Soghrati said.

“The ultimate goal is to develop a digital twin of everything a surgeon may operate on,” he said. “Right now, they’re only used for very, very challenging surgeries, but we want to help run those simulations and tune those parameters even more.” (ANI)

ShareTweetSendShareSend

Latest News

“Don’t understand why Rahul Gandhi wants to have Parliament special session”: BJP leader Rajeev Chandrasekhar

“We will always be indebted” Priyanka Gandhi pays tribute to soldiers killed in cross-border shelling

Delhi HC escalates action against DSGMC on unpaid dues

PM Modi holds meeting with Rajnath Singh, Jaishankar, NSA, CDS, service chiefs

“Tragic incident,” Chhattisgarh DyCM Arun Sao condoles demise of 13 people killed in Saragaon accident

Leadership transition takes effect in Congress’ Kerala Unit; Sunny Joseph assumes charge as new KPCC president

India’s firm response through Op Sindoor against Pakistan comes under PM Modi’s leadership

Defence Expert DS Dhillon stresses talks for India-Pak peace

Whenever terrorism raises ist head, we will show these pictures: BJP’s Sambit Patra exposes Pak-terror tango

JK CM Omar Abdullah, LG Manoj Sinha visit families of victims in Poonch after India-Pak understanding

Washington [US], May 6 (ANI): A new study suggests how scientists can use artificial intelligence to predict how cancer may affect the probability of fractures along the spinal column.

In the U.S., more than 1.6 million cases of cancer are diagnosed every year, and about 10 per cent of those patients experience spinal metastasis -- when the disease spreads from other places in the body to the spine. One of the biggest clinical concerns patients face is the risk of spinal fractures due to these tumours, which can lead to severe pain and spinal instability.

"Spinal fracture increases the risk of patient death by about 15 per cent," said Soheil Soghrati, co-author of the study and associate professor of mechanical and aerospace engineering at The Ohio State University. "By predicting the outcome of these fractures, our research offers medical experts the opportunity to design better treatment strategies, and help patients make better-informed decisions."

While many of the changes the body undergoes when exposed to cancerous lesions are still a mystery, with the power of computational modelling, scientists can get a better idea of what's happening to the spine, said Soghrati.

Their study, published in the International Journal for Numerical Methods in Biomedical Engineering, describes how the researchers trained an AI-assisted framework called ReconGAN to create a digital twin or a virtual reconstruction of a patient's vertebra.

Unlike 3D printing, where a virtual model is turned into a physical object, the concept of a digital twin involves building a computer simulation of its real-life counterpart without creating it physically. Such a simulation can be used to predict an object or system's future performance - in this case, how much stress the vertebra can take before cracking under pressure.

By training ReconGAN on MRI and micro-CT images obtained by taking slice-by-slice pictures of vertebrae acquired from a cadaver, researchers were able to generate realistic microstructural models of the spine. Using their simulation, Soghrati's team was also able to virtually enlarge the model, a capability the study says is imperative to understanding and incorporating changes into the entirety of a vertebra's geometric shape.

"What really makes the work in a distinct way is how detailed we were able to model the geometry of the vertebra," said Soghrati. "We can virtually evolve the same bone from one stage to another."

In this case, the researchers used CT/MRI scans from a 51-year-old female lung cancer patient whose cancer had metastasized to simulate what might happen if cancer weakened some of the vertebrae and how that would affect how much stress the bones could take before fracturing.

The model predicted how much strength parts of the vertebra would lose as a result of the tumours, as well as other changes that could be expected as cancer progressed. Some of their predictions were confirmed by clinical observations in cancer patients.

For a field like orthopaedics, using a non-invasive tool like the digital twin can help surgeons understand new therapies, simulate different surgical scenarios and envision how the bone will change over time, either due to bone weakness or to the effects of radiation. The digital twin can also be modified to patient-specific needs, Soghrati said.

"The ultimate goal is to develop a digital twin of everything a surgeon may operate on," he said. "Right now, they're only used for very, very challenging surgeries, but we want to help run those simulations and tune those parameters even more." (ANI)

No Result
View All Result
  • Home
  • Latest News
  • National
  • International
  • Entertainment
  • Politics
  • Sports
  • Business
  • More
    • Health
    • Lifestyle
    • Technology
    • Science